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The existence of solutions for a class of abstract evolution equations generated by maximal monotone
operators with non-local convex constraint is considered. This result is a generalization of the theory
of Lagrange multiplier related to variational inequalities [1], [3]. Based on the concept of optimization
problems, the theory of Lagrange multiplier has strong relevance to various minimizing problems for some
cost functionals with constraint. The objective of this paper is to give an extension of the well-known
theory to a more general setting, in order to apply to nonlinear parabolic partial differential inclusions
[2], [4].

Let V be a real reflexive and strictly convex Banach space and V∗ be the dual space of V, A : V → 2V
∗

be a maximal monotone operator, and Ψ : V → [0, +∞) be a continuous, convex and bounded functional
with D(Ψ) = V; hence Ψ(B) is a bounded subset of R for each bounded subset B ⊂ V. Then, consider
the following problem to find an element u ∈ V and a number λ such that

Au + λ∂∗Ψ(u) 3 f in V∗,
λ ≥ 0, Ψ(u)− k0 ≤ 0, λ(Ψ(u)− k0) = 0,

where k0 is given constant. An existence result with some comments are presented.
This is a joint work with Nobuyuki Kenmochi, Bukkyo University, Japan.
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pacité et monotonie. Thesis, Université Pierre et Marie Curie, Paris 6, (1979).
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