Large time behavior of a solution for carbon dioxide transport model in concrete carbonation process

Kota Kumazaki

Department of Natural and Physical Sciences, Tomakomai National College of Technology, Japan k.kumazaki@gt.tomakomai-ct.ac.jp

In this talk, we consider the following initial boundary value problem (P) which is a mathematical model of carbon dioxide transport in concrete carbonation process:

$$\frac{\partial}{\partial t} [\phi(1 - e^{-\int_0^t u(\tau) d\tau}) \cdot u] - \Delta u = -w_0 u e^{-\int_0^t u(\tau) d\tau} \quad \text{in } (0, T) \times \Omega,$$

$$u = u_b \quad \text{on } (0, T) \times \Gamma,$$

$$u(0) = u_0 \quad \text{in } \Omega.$$

Here, Ω is a bounded domain of \mathbb{R}^3 with a smooth boundary $\Gamma = \partial \Omega$, ϕ is a function in $\mathbb{C}^1(\mathbb{R})$ satisfying $\phi_0 \leq \phi(r) \leq 1$ for $r \in \mathbb{R}$ where ϕ_0 is a positive constant, u_b is a given function on Q(T), and w_0 and u_0 also are given functions on Ω . From the physical point of view, Ω is a domain occupied by concrete, the unknown function u and ϕ represent the concentration of carbon dioxide in air, and the porosity, respectively.

In [1], we proved the existence and uniqueness of a global solution of (P). In this talk, we show that the solution of (P) converges to a solution of the steady state problem, and moreover clarify the structure of the solution of the steady state problem considering two cases for boundary data.

References

- [1] K. Kumazaki: A mathematical model of carbon dioxide transport model in concrete carbonation process. To appear in Discrete and Continuous Dynamical Systems-Series S.
- [2] K. Kumazaki: Large time behavior of a solution of carbon dioxide transport model in concrete carbonation process. Submitted.